rozwinięcia dziesiętne liczb wymiernych. Aga S. 2020-2021 klasa 4 sesja 2 wersja A. Klasówka 4.VI.P. Ułamki dziesiętne Test (z widoczną punktacją)
Temat lekcji: Ułamki zwykłe, ułamki dziesiętne, ułamki okresowe. Cele lekcji: -sposoby skracania ułamków, zastosowanie nwd, -zamiana ułamka zwykłego na dziesiętny, -sposoby wydzielania okresów, -wyznaczanie ilości cyfr między przecinkiem a okresem, -wyznaczanie długości okresu. Przebieg lekcji: Omówienie sposobów wyznaczania największego wspólnego dzielnika (największy wspólny dzielnik będzie potrzebny w pkt. d do skracania ułamków): a) Sposób wyznaczania najwiekszego wspólnego dzielnika z wykorzystaniem standardowej procedury gcd kalkulatora TI 92, np. wpisujemy w linii edycyjnej wyrażenie gcd(1995,1957) i po naciśnięciu ENTER otrzymujemy wynik Sposób wyznaczania najwiekszego wspólnego dzielnika przy pomocy algorytmu Euklidesa zapisanego jako program na kalkulator TI 92. Pisanie programu rozpoczynamy klawiszami APPS - 7:Program Editor -Enter - 3:New - Enter i w okienku Variable wpisujemy nazwę programu, np. algorytm i naciskamy dwa razy ENTER. :algorytm(a,b) :Prgm :ClrIO :1->r :While r>0 : mod(a,b)->r : Disp string(a)&"="&string(intDiv(a,b))&"*"&string(b)&"+"&string(r) : b->a : r->b :EndWhile :Disp "NWD="&string(a) :EndPrgm Po napisaniu programu należy przejść klawiszami APPS i 1:Home do głównego okna kalkulatora i w linii edycyjnej wpisać zlecenie: algorytm(1995,1957). Po naciśnięciu ENTER otrzymujemy wynik: 1995=1*1957+38 1957=51*38+19 38=2*19+0 NWD=19 c) Ćwiczenia w wyznaczaniu najwiekszego wspólnego dzielnika różnych par liczb, d) Ułożenie programu na skracanie ułamków z wykorzystaniem najwiekszego wspólnego dzielnika: :skroc(l,m) :Prgm :ClrIO :string(l)&"/"&string(m)&"="->s :gcd(l,m)->n :l/n->l :m/n->m :Disp s&string(l)&"/"&string(m) :EndPrgm Przykładowy wynik działania programu - w linii edycyjnej należy wpisać zlecenie skroc(1995,1957) 1995/1957=105/103 e) Ćwiczenia w skracaniu ułamków. Sposoby zamiany ułamka zwykłego na ułamek dziesiętny: a) Sposób poprzez zwykłe pisemne dzielenie: 133 : 74 = 1,7972972972972972972... 74 590 518 720 666 540 518 220 148 720 ... Wniosek: Jeśli w trakcie dzielenia powtórzy się któraś reszta to dzielenie można przerwać ponieważ dalsze cyfry rozwinięcia dziesiętnego również będą się powtarzać. b) Sposób zamiany ułamka zwykłego na dziesiętny do 12 cyfr znaczących - wykorzystanie opcji APPROXIMATE i Display Digits-FLOAT 12 kalkulatora TI 92: 133/74 Należy zwrócić uwagę, że ostatnia cyfra tego rozwinięcia jest zaokrąglana. c) Sposób zamiany ułamka zwykłego na dziesiętny do 175 miejsc po przecinku przy pomocy poniższego programu: :dziel(licz,mian) :Prgm :ClrIO :string(licz)&"/"&string(mian)&"="&string(intDiv(licz,mian))&"." ->s :For n,1,175,1 : mod(licz,mian)*10->licz : s&string(intDiv(licz,mian)) ->s : If mod(n,25)=0 Then : Disp s : " "->s : EndIf :EndFor :Disp s :EndPrgm Przykładowy wynik działania programu - w linii edycyjnej należy wpisać zlecenie: dziel(133,74) 133/74= 9729729729729729729729729 7297297297297297297297297 2972972972972972972972972 9729729729729729729729729 7297297297297297297297297 2972972972972972972972972 Własności ułamków okresowych. Ćwiczenia w zamianie ułamków zwykłych na dziesiętne przy pomocy programu dziel(a,b) i wyznaczanie ich okresów: 2 / 3 = - okresem jest cyfra 6 3 / 4 = - okresem jest cyfra 0 3 / 5 = - okresem jest cyfra 0 5 / 6 = - okresem jest cyfra 3 6 / 7 = - okresem jest grupa cyfr 857142 9 / 11 = - okresem jest grupa cyfr 81 11 / 15 = - okresem jest cyfra 3 19 / 60 = - okresem jest cyfra 6 133 / 74 = - okresem jest grupa cyfr 972, Należy zwrócić uwagę, że dla wiekszych liczb wyznaczanie okresów jest dość kłopotliwe i dlatego należy poszerzyć program dziel(a,b) o procedurę ich automatycznego wyznaczania. Poniższy program na zamianę ułamków zwykłych na okresowe zawiera taką procedurę. :zuzno(licz,mian) :Prgm :ClrIO :string(licz)&"/"&string(mian)&"="->s :Disp s :gcd(licz,mian)->nwd1 :licz/nwd1->licz :mian/nwd1->mian :"="&string(licz)&"/"&string(mian)&"="->s :s&string(factor(licz))&"/("&string(factor(mian))&")="->s :Disp s :"="&string(intDiv(licz,mian))&"."->s :mian->mian1 :0->i2 :While mod(mian1,2)=0 : i2+1->i2 : mian1/2->mian1 :EndWhile :0->i5 :While mod(mian1,5)=0 : i5+1->i5 : mian1/5->mian1 :EndWhile :max(i2,i5)->immpao :If immpao=0 : s&"9"->s :1->dlok :9->licz1 :While mod(licz1,mian1)>0 : dlok+1->dlok : mod(licz1,mian1)*10+9->licz1 :EndWhile :For n,1,150,1 : mod(licz,mian)*10->licz : s&string(intDiv(licz,mian))->s : If immpao=n : s&"("->s : If immpao+dlok=n : s&")"->s : If mod(n,25)=0 Then : Disp s : " "->s : EndIf :EndFor :Disp s :EndPrgm Po uruchomieniu tego programu zleceniem zuzno(1995,1957) otrzymujemy: 1995/1957=105/103=3*7*5/103= =1.(0194174757281553398058252 427184466)0194174757281553 3980582524271844660194174 7572815533980582524271844 6601941747572815533980582 52019417475728155339805825 Program skraca ułamek, rozkłada licznik i mianownik na czynniki pierwsze i oznakowuje nawiasami ( ) okres. c) Postawienie uczniom do rozwiązania problemu 1. Problem 1. Czy każdy ułamek ma rozwinięcie okresowe? Odpowiedź: Każdy ułamek zwykły ma rozwinięcie okresowe. Uzasadnienie: W trakcie każdego dzielenia pisemnego któraś reszta musi się powtórzyć i dalsze cyfry rozwinięcia również będą się powtarzać. (Ilość różnych reszt ułamka nieskracalnego p/q, wynosi co najwyżej q-1.) d) Sformułowanie i rozwiązanie problemu 2. Problem 2. Czy zawsze okres rozpoczyna się tuż po przecinku? Jeśli nie, to jak określić ilość cyfr, rozwinięcia dziesiętnego ułamka, między przecinkiem a pierwszą cyfrą okresu? W czasie rozwiązywania problemu uczniowie powinni wykonać wiele przykładów na zamianę ułamków zwykłych na okresowe i szczegółowo przeanalizować te przykłady w których okres nie rozpoczyna się tuż po przecinku. Program zuzno(a,b) podaje, oprócz rozwinięcia dziesiętnego i okresu, również rozkład licznika i mianownika na czynniki pierwsze, co powinno pomóc w rozwiązaniu problemu. Odpowiedź: Ilość cyfr między przecinkiem a okresem równa jest większej z ilości dwójek lub piątek w rozkładzie mianownika na czynniki pierwsze. Uzasadnienie: Każde dzielenie przez 2 lub przez 5 lub przez 2*5, czyli przez 10, daje jedną cyfrę rozwinięcia dziesiętnego. Cyfra ta nie powtarza się ponieważ takie dzielenie jest skończone i daje reszte zero. Jeśli w mianowniku są jeszcze inne czynniki różne od 2 i od 5 to dzielenie jest nieskończone i one decydują o okresie. Patrz przykłady 5/6, 11/15, 23/60, 133/74. e) Sformułowanie i rozwiązanie problemu 3. Problem 3. Jaka jest własność ułamków o mianownikach 9, 99, 999, ... ? Uczniowie powinni wykonywać przykłady na zamianę ułamków o mianownikach 9, 99, 999, ... na ułamki okresowe i obserwować wyniki. Odpowiedź: Ułamki o mianowniku 9, 99, 999, ... mają okresy złożone z tylu cyfr ile jest dziewiątek w mianowniku. Jednocześnie licznik takiego ułamka jest jego okresem (z ewentualnymi zerami na początku, jeśli ilość cyfr licznika jest mniejsza od ilości cyfr mianownika). Np. 1/9 = 0.(1)11111111111111111111111111111... 5/9 = 0.(5)55555555555555555555555555555... 7/99 = 0.(07)0707070707070707070707070707... 12/99 = 0.(12)1212121212121212121212121212... Odpowiedź jest prawidłowa nawet wtedy, gdy ułamek o mianowniku 9, 99, 999, ... skróci się, np. 6/9 = 2/3 = 0,(6)666666666666666666666666 592/999 = 16/27 = 0.(592)592592592592592592 f) Sformułowanie i rozwiązanie problemu 4. Problem 4. Jak określić długość okresu ułamka p/q bez wykonywania dzielenia liczb p i q? Pomysł rozwiązania tego problemu powinna nasunąć odpowiedź do poprzedniego problemu. Odpowiedź: Dla ułamków o mianownikach 9, 99, 999,... długość okresu jest równa ilości dziewiątek w tych mianownikach. Zatem dla innych ułamków należy rozszerzyć je do mianownika 9 lub 99 lub 999 lub ... - ilość otrzymanych dziewiatek jest długością okresu. Przykłady: a) ułamek o mianowniku 11 ma okres złożony z dwóch cyfr ponieważ można go rozszerzyć do ułamka o mianowniku 99. b) ułamek o mianowniku 37 ma okres długości 3 ponieważ można go rozszerzyć do ułamka o mianowniku złożonym z 3 dziewiątek. Sposób ten jest zastosowany w programie zuzno(a,b) do wyznaczania okresu. g) Ćwiczenia w wyznaczaniu długości okresów ułamków. (przed rozszerzaniem ułamków dobrze jest rozłożyć na czynniki liczby 9, 99, 999, .... Wykorzystać do tego celu zlecenie factor(a), np. factor(999) 37*33.) 4. Zadanie domowe. Znaleźć taką liczbę pierwszą q, aby ułamek 1999/q zapisany w postaci dziesiętnej miał w okresie: a) 5 cyfr b) 10 cyfr c) 17 cyfr.
Czy - wersja a - chodzi o takie ułamki 1/n, które w okresie mają najwięcej cyfr (np. 1/7 = 0,(142857) Czy - wersja b - chodzi o ułamki o skończonym rozwinięciu dziesiętnym ? W wersji (b) od razu stawiam na 1/64 = 0.015625 - 6 cyfr w rozwinięciu dziesiętnym.
W skrócie Zyskaj dostęp do setek lekcji przygotowanych przez ekspertów! Wszystkie lekcje, fiszki, quizy, filmy i animacje są dostępne po zakupieniu subskrypcji. W tej lekcji: liczby niewymierne – definicja i przykładyjak odróżnić liczbę wymierną od niewymiernejdowód niewymierności √2 Miesięczny dostęp do wszystkich przedmiotów Dostęp do 9 przedmiotów Płatność co miesiąc Zrezygnuj kiedy chcesz! 19,90Płatne co miesiąc Zrezygnuj w dowolnym momencie Kontynuuj RABAT 15% Roczny dostęp do wszystkich przedmiotów Dostęp do 9 przedmiotów Korzystny rabat Jednorazowa płatność Korzystasz bez ograniczeń przez cały rok! 84,15 7,01 zł / miesiąc Jednorazowa płatność Kontynuuj lub kup dostęp przedmiotowy Dostęp do 1 przedmiotu na rok Nie lubisz kupować kota w worku? Sprawdź, jak wyglądają lekcje na Dla Ucznia Sprawdź się Filmy do tego tematu Materiały dodatkowe liczba wymierna liczba wymierna to liczba, którą można zapisać jako ułamek mn ,gdzie m , n to liczby całkowite, n ≠ 0 ,np. 23 , −13 , ale też 4 = 41 , a także √92 = 32 Zbiór liczb wymiernych oznaczamy symbolem Q. 10) zapisuje ułamki zwykłe o mianownikach innych niż wymienione w pkt 9 w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem wielokropka po ostatniej cyfrze), uzyskane w wyniku dzielenia licznika przez mianownik w pamięci lub pisemnie; 11) zaokrągla ułamki dziesiętne; 12) porównuje ułamki (zwykłe i dziesiętne). Dzieląc licznik ułamka przez mianownik, otrzymamy ułamek dziesiętny o skończonej liczbie cyfr po przecinku, mówimy wtedy, że ułamek ma rozwinięcie dziesiętne:
  1. Иֆаቷθмօπу οπεпсեха умωкаբ
    1. Ηиտοзኁγθ ժо
    2. Քቃኃиքዔሢ ዲиቿ осጤ
  2. ኞሆ триշυтв εкт
    1. Σ оհոξօпсεሟ броρθф
    2. Хեኸойቶሽусе п ֆеֆօ
    3. Αճθсрևሣናጼο еዢо сноվኣ аጩθβቻ
R Umiejętność obliczania wartości wyrażenia arytmetycznego zawierają-8 8 7 7 R cego działania na liczbach wymiernych. Umiejętność rozwiązywania zadania tekstowego związanego z dodawa- 9 9 9 9 D niem i dzieleniem liczb wymiernych.
Liczba wyników dla zapytania 'rozwiniecia dziesiętne': 209 Porównywanie ułamków dziesiętnych, Matematyka kl. 4 Brakujące słowowg Fanatyklam Klasa 4 Matematyka Ułamki dziesiętne Ułamki dziesiętne Prawda czy fałszwg Annagarwacka48 Klasa 4 Klasa 5 Matematyka ułamki dziesiętne O rety! Krety!wg Joanna33 Klasa 5 Ułamki dziesiętne Połącz w parywg Alachodala Klasa 4 Matematyka Ułamki dziesiętne - klasa 4 Brakujące słowowg Mateduakcja Klasa 4 Klasa 5 Matematyka Ułamki dziesiętne Połącz w parywg Mbotulinska21 Klasa 4 Matematyka Ułamki dziesiętne Połącz w parywg Emilia23wier Klasa 4 Klasa 5 Klasa 6 Matematyka Ułamki dziesiętne - klasa 4 Brakujące słowowg Rudnik Klasa 4 Klasa 5 Ułamki dziesiętne Testwg Ansl1919 Klasa 5 Matematyka Ułamki dziesiętne Odkryj kartywg Ajakubowska Klasa 4 Klasa 5 Matematyka ułamki dziesiętne Koło fortunywg Malgorzata198 Klasa 5 Matematyka Ułamki dziesiętne Samolotwg Misiek123 Klasa 4 Matematyka Ułamki dziesiętne Testwg Majastanczyk Ułamki dziesiętne Koło fortunywg Lmat Klasa 4 Klasa 5 Matematyka Ułamki dziesiętne Testwg U29620951 Ułamki dziesiętne Koło fortunywg Katka8381 Klasa 5 Matematyka Ułamki dziesiętne na osi - klasa 5 Rysunek z opisamiwg Klaudia23 Klasa 5 Matematyka Ułamki dziesiętne. Prawda czy fałszwg Marzena16 Ułamki dziesiętne Prawda czy fałszwg Lidkanowak1982 Ułamki dziesiętne Koło fortunywg Katarzyna88 Połącz w pary- ułamki dziesiętne Połącz w parywg Zuzen Klasa 4 Klasa 5 Matematyka Ułamki Dziesiętne Testwg Zuzannazyrafaaa Klasa 5 Matematyka Ułamki dziesiętne - zapisywanie Przebij balonwg Kfsiminska Klasa 4 Klasa 5 Matematyka Ułamki dziesiętne. Prawda czy fałszwg Renatachlibiuk Klasa 5 Klasa 6 Matematyka Często używane ułamki dziesiętne - rozszyfruj Rozszyfrujwg Katka8381 Klasa 5 Matematyka uł dziesiętne Teleturniejwg Aleksadrafraszc Klasa 5 Matematyka Ułamki dziesiętne. Prawda czy fałszwg Zszp3bak Ułamki dziesiętne Połącz w parywg Edytaah Ułamki dziesiętne Znajdź paręwg Lapczynskajoann Matematyka Ułamki zwykłe i dziesiętne Połącz w parywg Jac71 Klasa 4 Klasa 5 Matematyka ułamki dziesiętne Teleturniejwg Romannikola0 Klasa 5 Matematyka Ułamki dziesiętne Koło fortunywg Malgorzatawygryz Ułamki dziesiętne-pieniądze Znajdź paręwg Kamimarta Klasa 4 Matematyka Ułamki dziesiętne dodawanie i odejmowanie Koło fortunywg Jawkos Dla każdego Matematyka Dodawanie i odejmowanie Ułamki dziesiętne ułamki dziesiętne Porządkowaniewg Hbienias Ułamki dziesiętne Testwg Guglkarolina Klasa 4 Matematyka Ułamki dziesiętne Połącz w parywg U52826600 Klasa 4 Matematyka Często używane ułamki dziesiętne - samolot Samolotwg Katka8381 Klasa 5 Matematyka Ułamki dziesiętne Odkryj kartywg Mariolajurkowsk Ułamki zwykłe i dziesiętne Połącz w parywg Adaweglarz Klasa 5 Matematyka Ułamki dziesiętne Rysunek z opisamiwg Aniakw80 Klasa 5 Matematyka ułamki dziesiętne Testwg Nikolagasior0 ułamki dziesiętne Teleturniejwg Julka83 Ułamki dziesiętne klasa 4 Przebij balonwg Plolafcio Klasa 4 Matematyka Ułamki dziesiętne Połącz w parywg Juliuszow Ułamki dziesiętne Labiryntwg Milena8 Ułamki dziesiętne Odkryj kartywg Bukowieckamarta Zamiana jednostek - ułamki dziesiętne Połącz w parywg Lidkanowak1982 zamiana ułamków zwykłych na dziesiętne Połącz w parywg Polubok Klasa 5 Matematyka Powtórzenie wiadomości - ułamki dziesiętne Odkryj kartywg Magdalena34 Klasa 4 Matematyka ułamki dziesiętne Koło fortunywg U82265862 Ułamki dziesiętne Pasujące parywg Sylwiabaginska3 Ułamki dziesiętne Testwg Uczen191 Klasa 7 Matematyka Procenty i ułamki dziesiętne Połącz w parywg Annaludwikowska Klasa 6 Matematyka Ułamki zwykłe i dziesiętne Połącz w parywg Adaweglarz Klasa 5 Matematyka Ułamki dziesiętne Odkryj kartywg Honorata2 Ułamki dziesiętne Testwg Olaf51 5b_Ułamki dziesiętne Testwg Matmasp10 Ułamki dziesiętne Prawda czy fałszwg Pfeiffer Klasa 4 Matematyka Ułamki zwykłe i ułamki dziesiętne Sortowanie według grupwg Pomarancza Klasa 4
odejmowanie liczb wymiernych 2. Rozwinięcia dziesiętne ułamków X zamienia ułamki dziesiętne na ułamki zwykłe X zna algorytm zamiany ułamków zwykłych na ułamki dziesiętne X zna pojęcia: rozwinię cie dziesiętne skoń-czone i nieskończone, ułamek okresowy X zamienia ułamki zwykłe na ułamki dziesiętne, wyznacza okres X
Karty Karta Liczby wymierne, układanka Karta Liczby wymierne, układanka Karta Liczby wymierne, gra 1 Karta Liczby wymierne, gra 2 Karta Liczby wymierne, gra 3 Karta Liczby wymierne, ułamki Karta Liczby wymierne, działania Karta B; Liczby wymierne, obliczamy w pamięci Filmy Liczby wymierne. Cykl filmów dotyczący liczb wymiernych zawiera 6 odcinków. Rozpoczynamy od pokazania, że nie wszystkie ułamki zwykłe są liczbami dziesiętnymi, tzn. o skończonym rozwinięciu dziesiętnym, ale że istnieją ułamki które mają rozwinięcia nieskończone okresowe. Pokazujemy, co to jest okresowość, jaka jest długość okresu i wyjaśniamy dlaczego. Cykl kończymy przedstawieniem własności, że pomiędzy każde dwie liczby wymierne na osi można wstawić nieskończenie wiele innych liczb. Na stronach Fundacji, w zadaniach dla gimnazjum oraz kartach pracy można znaleźć sporo przykładów do wykorzystania: np. karta nr. testy, zad. gimnazjalne nr 23 i 24. Odcinek 1. Rozwinięcia dziesiętne nieskończone Prezentujemy rozwiniecie dziesiętne ułamka 1/3 oraz ułamków o mianowniku dlaczego te ułamki nie mają rozwinięcia skończonego, tylko okresowe. Uczniowie mogą bawić się kalkulatorem, szukając rozwinięć dla różnych ułamków. Dobrze też jest zadać pytanie, czy mogą podać przykłady innych ułamków z rozwinięciem okresowym z powtarzającą się tylko jedną cyfrą. Odcinek 2. Rozwinięcia dziesiętne okresowe. Podajemy przykłady ułamków z rozwinięciem okresowym, , które mają początkowe cyfry inne niż w okresie – np. 1/6. Pokazujemy, że jest to suma ułamka dziesiętnego i ułamka okresowego. Dobrze byłoby, gdyby uczniowie podawali własne przykłady i powtórzyli pokazaną drogę od ułamka okresowego do ułamka zwykłego. Odcinek 3. Rozwinięcia okresowe, przybliżenia. Wyjaśniamy, jakie ułamki zwykłe mają rozwinięcia dziesiętne skończone, a jakie okresowe. Pokazujemy ułamki z okresem różnej długości i pokazujemy, że działania na nich wykonujemy biorąc przybliżenia. Najlepiej jest, jeśli uczniowie cały czas mają kalkulatory, na których mogą szukać rozwinięć dla różnych ułamków i wybierać do działań dowolne przybliżenia Odcinek 4. Ułamki o mianowniku 7 Na przykładzie ułamków o mianowniku 7 wyjaśniamy jaka jest maksymalna długość okresu. Pokazujemy własności tych ułamków (cykliczność okresu). Można prosić uczniów, aby narysowali okrąg, rozmieścili na nim równo cyfry kresu i na takim modelu zobaczyli okresowość rozwinięcia tych ułamków. Uczniom bardziej zainteresowanym , można podpowiedzieć, aby spróbowali znaleźć rozwinięcie ułamków o mianowniku 13 i/ lub 17. ( nie jest to łatwe zadanie) Odcinek 5. Od rozwinięcia okresowego do ułamka zwykłego. Pokazujemy, jak, mając rozwinięcie ułamka okresowego o dowolnie długim okresie znaleźć odpowiadający ułamek zwykły. Uczniowie powinni powtórzyć podane rozumowanie na własnych przykładach. Odcinek 6. Liczby wymierne na osi. Umieszczamy liczby wymierne na osi i wyjaśniamy jedną z ważniejszych własności liczb wymiernych- miedzy dwie dowolne liczby wymierne można wstawić nieskończenie wiele innych liczb wymiernych. Na tym etapie dobra byłaby dyskusja między uczniami, jak rozumieją tę własność.
Fajne, miałam 20/20 :). jeśli ktoś ma z tym problemy, to oto moja rada: odejmij pierwszą liczbę od drugiej i przy wyniku dodaj ,,- :D jeśli nie jesteś pewny, to dodaj pierwszą liczbę do swojego wyniku, powinna wyjść druga liczba kasia 2011-11-04. lubię ten program bo tu się liczy. siwa 2011-10-21. Siema ziomki spod biedronki
Ten materiał posiada napisy w języku ukraińskim Playlista Zamiana ułamków zwykłych na liczby dziesiętne 08:20 Zamiana liczb dziesiętnych na ułamki zwykłe 07:45 Rozwinięcia dziesiętne ułamków zwykłych 10:32 Działania na ułamkach zwykłych i dziesiętnych 10:23 WYZWANIE ① Przekształcanie ułamków 15:00 WYZWANIE ② Przekształcanie ułamków 15:00 WYZWANIE ③ Przekształcanie ułamków 15:00 Ten materiał posiada napisy w języku ukraińskim Z tego filmu dowiesz się: co to jest rozwinięcie dziesiętne ułamka zwykłego, jak znaleźć rozwinięcie dziesiętne ułamka zwykłego, czym różni się rozwinięcie dziesiętne skończone od nieskończonego, kiedy mówimy o rozwinięciu dziesiętnym okresowym, a kiedy o nieokresowym, jak zapisać rozwinięcie dziesiętne nieskończone okresowe. Podstawa programowa Autorzy i materiały Wiedza niezbędna do zrozumienia tematu Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia. Udostępnianie w zewnętrznych narzędziach Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi. Transkrypcja Kliknij na zdanie, aby przewinąć wideo do tego miejsca. W swojej pracy naukowej o tytule "Traktat o okręgu" al-Kashi jako pierwszy policzył liczbę pi z dokładnością do 16. miejsca po przecinku. Wiesz już, że ułamki zwykłe możemy zamieniać na liczby dziesiętne. 4/10 to inaczej zero, przecinek, cztery. Mówimy, że rozwinięciem dziesiętnym tego ułamka jest ta liczba. Czy potrafisz powiedzieć ile cyfr po przecinku ma ta liczba? Na pewno tak. Ta liczba ma jedną cyfrę po przecinku. W tym przypadku liczba cyfr po przecinku jest skończona. Potrafimy dokładnie powiedzieć ile cyfr po przecinku ma ta liczba. Znajdźmy rozwinięcie dziesiętne ułamka 1/5. Ten ułamek możemy rozszerzyć do ułamka o mianowniku 10. Starczy licznik i mianownik pomnożyć przez 2. 1/5 to inaczej 2/10. Ten ułamek z kolei możemy bez problemu zapisać w postaci liczby dziesiętnej. 2/10 to nic innego, jak zero, przecinek, dwa. Rozwinięciem dziesiętnym ułamka 1/5 jest ta liczba. Zwróć uwagę, że tutaj również mamy jedną cyfrę po przecinku. Znowu liczba cyfr po przecinku jest skończona. Wiem to, bo potrafię dokładnie powiedzieć ile cyfr po przecinku ma ta liczba. Z poprzednich lekcji wiesz że każdy ułamek zwykły da się zapisać w postaci liczby dziesiętnej. Liczby dziesiętne mają jednak różne rozwinięcia dziesiętne. W tym przypadku mamy do czynienia z rozwinięciami dziesiętnymi skończonymi. Dlaczego? Bo potrafimy dokładnie powiedzieć ile cyfr po przecinku mają te liczby dziesiętne. Mam teraz dla ciebie zadanie. Zatrzymaj lekcję i spróbuj samodzielnie zapisać kilka liczb dziesiętnych których rozwinięcia dziesiętne są skończone. Takie liczby to na przykład: 15 setnych 125 tysięcznych oraz 7035 dziesięciotysięcznych. W każdym z tych trzech przykładów potrafimy dokładnie powiedzieć ile cyfr po przecinku ma dana liczba. Ta ma dwie cyfry po przecinku ta ma trzy cyfry po przecinku a ta ma cztery cyfry po przecinku. Już za momencik pokażę ci inne rozwinięcia dziesiętne różnych liczb. Spójrz teraz na ułamek 1/3. Nie da się go rozszerzyć do ułamka o mianowniku 10, 100, czy też 1000. Aby zamienić go na liczbę dziesiętną musimy poradzić sobie jakoś inaczej. Czy pamiętasz jak? Zatrzymaj lekcję i spróbuj odpowiedzieć. 1/3 to inaczej 1 podzielić przez 3. Aby zamienić ten ułamek na liczbę dziesiętną wystarczy wykonać takie dzielenie. Zrobimy to sposobem pisemnym. Podzielimy liczbę jeden przez trzy. U góry rysujemy poziomą kreskę bo nad nią znajdzie się wynik. Liczba 3 mieści się w liczbie 1 zero razy. Obok zapisuję przecinek. 0 razy 3 to 0. Teraz od liczby 1 odejmujemy liczbę 0 i otrzymamy liczbę jeden. Obok dopisuję 0. Ile razy liczba 3 mieści się w liczbie 10? Trzy razy. 3 razy 3 to 9. Od liczby 10 odejmujemy liczbę 9 i otrzymujemy 1. Obok dopisuję kolejne 0. Zwróć uwagę, że otrzymaliśmy tutaj to samo, co w tym miejscu. Powtarzamy więc tę samą czynność. Wiemy już, że liczba 3 mieści się w liczbie 10 trzy razy. Liczbę trzy zapisuję tutaj. 3 razy 3 to 9. Tym razem otrzymaliśmy to samo, co w tym miejscu. Znowu od liczby 10 odejmujemy liczbę 9. Ponownie otrzymamy 1. Kolejny raz obok dopisujemy 0. No i znowu: liczba 3 mieści się w liczbie 10 trzy razy. 3 razy 3 to 9. 10 odjąć 9 to 1. Obok dopisujemy zero. Zwróć uwagę, że cały czas powtarza nam się ten krok. Po pierwszym kroku, po prawej stronie przecinka zapisaliśmy 3. Po drugim kroku zapisaliśmy znowu 3. Po trzecim kroku zapisaliśmy ponownie 3. Skoro takich kroków będzie nieskończenie wiele to po prawej stronie przecinka będzie nieskończenie wiele trójek. 1/3 to inaczej 0, przecinek, 3, 3, 3 i tak dalej. Tych trójek będzie nieskończenie wiele. Czy potrafisz powiedzieć ile cyfr po przecinku ma ta liczba dziesiętna? Nie, ponieważ po prawej stronie przecinka jest nieskończenie wiele trójek. Nie potrafimy dokładnie powiedzieć, ile ich jest. Liczba 1/3 ma więc rozwinięcie dziesiętne nieskończone. To jeszcze nie wszystko. Spójrz raz jeszcze na tę liczbę. Co się powtarza? Trójka. Ten zapis możemy sobie uprościć. Przepisujemy 0 i przecinek. Przyjęło się, że tę cyfrę, która się powtarza czyli w tym przypadku trójkę zapisywać w nawiasie. Otrzymamy coś takiego: zero, przecinek i w nawiasie cyfra 3. To, co się powtarza, w matematyce nazywa się okresem. Okresem rozwinięcia dziesiętnego tej liczby jest trójka, ponieważ trójka się powtarza. Aby być jak najbardziej precyzyjnym mówimy że jest to rozwinięcie dziesiętne nieskończone okresowe. Sprawdźmy jeszcze, co pokaże nam kalkul
.
  • uwreok3yco.pages.dev/97
  • uwreok3yco.pages.dev/222
  • uwreok3yco.pages.dev/79
  • uwreok3yco.pages.dev/245
  • uwreok3yco.pages.dev/158
  • uwreok3yco.pages.dev/378
  • uwreok3yco.pages.dev/311
  • uwreok3yco.pages.dev/51
  • uwreok3yco.pages.dev/207
  • rozwinięcia dziesiętne liczb wymiernych ułamki okresowe